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Abstract

The purpose of this report is to inform the New 
Zealand forest industry of test results for a new tree 
counting system, discuss the potential for inventory 
applications, and identify future developments. The 
new methodology utilises calibration counts, made 
either on the ground or on an image, to obtain accurate 
estimates of total tree counts for forest stands. The 
method also provides a measure of error, which has been 
used to evaluate test results. Accuracy of tree counts was 
evaluated on two image types for a number of stands of 
varying stockings and ages from two contrasting sites. 
The effect of two different image-processing operators 
and two different tree detection algorithms were also 
evaluated. 

Results showed that overall the tree count error 
with LiDAR images was 6% with the ground calibration 
method and 11% with the image calibration method. 
The increased error of image calibration method is due 
to operator subjectivity in image interpretation and 
LiDAR images were found to give better accuracy than 
orthophotos. There was no effect of stand age, stocking, 
image-processing operator or tree detection algorithm 
on accuracy, indicating the tree counting system is 
robust. The reduction in operator input of the new 
system has increased automation and accuracy. Future 
work will focus on improving tree counting accuracy 
and developing inventory applications.

Introduction

New remotely sensed data are creating a revolution 
in forest inventory. A combination of new technologies, 
increased computing power and novel processing 
methods are opening up new possibilities. LiDAR is 
a notable example, currently being evaluated and 
adopted by the local forestry sector using very effective 
area-based analysis (ABA). To address some issues with 
ABA, such as difficulty in estimating stocking, we have 
been developing an alternative approach based on the 
detection of individual trees from LiDAR. In this paper we 
present results of accuracy tests for a new tree counting 
system and discuss options for its use in forest inventory.

Conventional inventory

Conventional forest inventory in New Zealand is 
based on sampling. Typically bounded circular plots 
are used, but refinements such as stratification and 
the use of double sampling with tally plots are also 
often implemented. The basis of this approach is the 
estimation of stand level measures from multiplication 

of plot means by stand area. This approach has been 
used successfully for decades. Experience has shown 
that plot sampling rates of 1–5% by area are sufficient to 
realise a PLE (probable limits of error) of 10% (Goulding 
& Lawrence, 1992). However, it is worth noting that any 
error in stand area is usually ignored when estimating 
stand totals and, depending on the state of the stand 
records, this can be large. 

Airborne LiDAR for inventory

The use of airborne LiDAR for forest inventory is 
a relatively recent development internationally and 
locally, with a useful introduction and outlook for the 
New Zealand scene given in an earlier article (Adams 
et al., 2011). A notable early local example was the use 
of LiDAR in a double sampling approach with ground 
plots for the national inventory of carbon stocks in 
the Land Use and Carbon Analysis System (LUCAS). 
The approach used here was to fit regression models to 
estimate carbon stocks from LiDAR metrics (Beets et al., 
2011, 2012). This is an example of ABA of LiDAR, an 
approach widely used to describe forest stands, which 
can provide estimates of variables of interest with fewer 
ground plots than would be used in conventional 
inventory and offer cost savings, dependent on the cost 
of the LiDAR.

Individual tree inventory

There is another approach to inventory that can 
reduce ground measurements and potentially offer cost 
savings – individual tree inventory. In conventional 
inventory, outlined earlier, measures made in ground 
plots are scaled to the stand level by multiplying by 
stand area. In a tree-based inventory, measures made 
on individual trees are scaled to the stand level by 
multiplying by the number of trees in the stand. The 
potential benefit of this approach is that far fewer trees 
need to be measured to characterise a stand to a given 
level of confidence (PLE), thereby making significant 
cost savings. There are two base requirements for 
individual tree inventory: an accurate estimate of tree 
count; and procedures to select and measure single trees. 
In both cases robust, efficient methods are required to 
make operational use a reality.

Tree-based analysis (TBA) is an alternative approach 
to ABA of LiDAR, and it may be used to meet the tree 
counting requirement for individual tree inventories. 
TBA is commonly referred to as individual tree 
crown (ITC) analysis in the scientific literature. This 
approach has been widely researched internationally, 
but operational methods have remained an elusive 
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goal. The international research has spanned decades, 
beginning with attempts to detect individual trees in 
aerial photographs, later in satellite images, and most 
recently in LiDAR data. Obtaining an accurate tree 
count, useful for a number of potential operational 
uses, is one of the reasons tree detection is being so 
avidly researched around the world. 

Counting trees is difficult

Future Forests Research Ltd (FFR) initiated a project 
to develop individual tree inventory, targeted for use 
in woodlots where conventional inventory would 
be inefficient or infeasible, but also with potential 
cost savings for larger stands. Initial research showed 
promising results using the TIMBRS software with 
aerial photographs (Culvenor, 2002; Goulding et al., 
2009). By 2010 variability of image quality in aerial 
photographs was identified as an issue affecting tree 
counting and near infrared (NIR), normalised difference 
vegetation index (NDVI) and QuickBird satellite images 
were being investigated to reduce these effects. In 2011, 
canopy images derived from LiDAR were evaluated and 
it soon became evident this could be the breakthrough 
required in image quality (Pont et al., 2012a). 

In addition to image quality, another significant 
issue affecting tree counting was the amount of time-
consuming and subjective operator input required to 
carry out the process. Most tree detection methods 
require smoothing to be applied to input images. The 
degree of smoothing applied has a strong effect on 
the number of trees detected, but this critical input 
is typically a best guess by the operator. These issues 
were also being echoed in the international research 
literature. LiDAR was beginning to be identified as the 
remote sensed imagery of choice for tree detection, and 
subjective inputs or choice of tree detection algorithm 
were seen as major barriers to the development of 
robust, accurate methods (Kaartinen et al., 2012; Larsen 
et al., 2011; Vauhkonen et al., 2011). 

A new methodology for tree detection 

With LiDAR images and the TIMBRS tree detection 
algorithm (Culvenor, 2002), attention was focused 
on reducing subjectivity in the process and applying 
statistical methods to obtain a measure of certainty on 
estimates of tree count. A framework was developed to 
combine these elements into a new approach called 
calibrated tree detection. A detailed description of 
the method and initial evaluation results are given in 
Pont et al. (in press). Figure 1 illustrates the main steps 
carried out in the new tree detection process. 

A key feature of the method is the use of calibration 
counts to reduce subjectivity in the process. Two alternative 
methods of making calibration counts are used: 

•	 In the ground calibration method, tree counts are 
made by field crew of trees falling inside circular 
calibration plots in the stand

•	 In the image calibration method, counts of tree-
tops are made by the image processing operator 
within circular ‘virtual plots’ drawn on the image. 

Figure 2a shows an example of a virtual plot on 
the image with blue dots indicating the tree-tops 
selected by the operator. Tree detection carried out by 
an algorithm lies at the heart of the process, but it is the 
use of calibration counts that ensures accurate counts 
are obtained.

The calibration counts are used at three distinct 
steps in the process, each reducing the amount of 
subjective inputs. The only subjectivity remaining in 
this new process is the determination of calibration 
counts on images when the image calibration method 
is used. Figure 2b shows an example of the results of the 
tree detection process on an image.

In evaluating the tree counting methodology there 
are a number of important factors to be considered. 
We wanted to quantify the effects of image type (i.e. 
LiDAR image versus aerial orthophotos), calibration 
method (i.e. ground-based versus image-based), tree 
detection algorithm and operator on accuracy. The 
new methodology provided estimation of the variance 
associated with tree count, which was used to generate 
a measure of error (root mean square error or RMSE) to 
evaluate these factors. 

Calibration counts

From image or ground calibration plot counts

Smoothing

Calibration count used to define a range of 
smoothing levels to be applied to the input image

Tree detection

Algorithm detects trees on smoothed images

Selection

Calibration counts used to select best  
detection result

Estimation

Calibration counts used with ratio estimation  
to obtain a total count

Total tree count and standard error

Figure 1: The main processes in the tree counting methodology
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Tree counting accuracy was evaluated using images 
and ground data collected in Pinus radiata D. Don stands 
from two North Island forest sites representing a range 
of ages. Aerial LiDAR data was converted into raster 
images suitable for tree counting with a pixel size of 0.5 
m using the Fusion tool CanopyModel (McGaughey & 
Carson, 2003). In the first study at Site A, orthophotos 
(0.4 m pixel size) and aerial LiDAR (pulse density 8.1 last 
returns per square metre) for four stands on relatively 
flat terrain were used. 

In the second study at Site B, only aerial LiDAR (pulse 
density 5.4 last returns per square metre) was evaluated 
for seven stands on steep terrain. At both sites ground and 
image calibration plots were established in stands loosely 
following conventional inventory practice: circular plots 
on a grid with random origin and orientation to obtain at 
least a 1–2% area sample; and plot area chosen to obtain 
a nominal 20 trees per plot. The characteristics of the 
four Site A and seven Site B stands are given in Table 1.

Tree counting accuracy

LiDAR images from both sites were used to evaluate 
the effect of calibration method and operator on accuracy. 
Error was quantified using root mean square error 

expressed as a percentage of the total count. Ground and 
image calibration gave errors of 5% and 10%, respectively, 
at Site A and 6% and 11%, respectively, at Site B as shown 
in Figure 3. Tree count accuracy was not affected by 
operator or calibration method at either of the two sites. 

Figure 2a: Region from LiDAR image for Stand 4 at site B showing the input image with an image calibration plot marked on the image in 
red and operator digitised tree-tops in blue

Table 1: Characteristics of test stands

Forest Stand Age Area Stocking Plot size Plots
site years ha stems ha-1 ha no.

A 1 7 37.97 826 0.02 20

2 17 89.28 341 0.04 26

3 32 45.60 219 0.08 47

4 32 59.21 204 0.06 38

B 1 13 34.93 417 0.05 14

2 14 8.31 383 0.05 10

3 21 27.62 517 0.04 18

4 22 46.00 467 0.04 23

5 21 21.08 417 0.05 21

6 26 46.57 400 0.05 14

7 25 25.25 383 0.05 13
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At Site A, tests showed tree counting based on LiDAR 
imagery gave superior results compared to orthophotos 
with both ground and image calibration methods. 
Orthophotos were affected by various lighting issues, 
such as shade, which confused both the human eye 
and the computer algorithms, particularly affecting the 
image calibration method. LiDAR images did not have 
these lighting issues as they do not rely on sunlight. 
Instead the emitted laser pulses uniformly illuminate 
the target. Because of this, interpretation by operators 
and tree detection algorithms was greatly improved. 

Site A results also showed no significant difference 
between the TIMBRS and an alternative tree detection 
algorithm, based on the watershed method, with 
differences in root mean square error of only 0.03% for 
ground calibration and 0.34% for image calibration. 
Recent international tests concluded that tree detection 
algorithms were a key determinant of accuracy, and that 
algorithms performed best when applied to forest types 
they were developed for. In those studies counts were often 
being carried out on a range of forest types, more complex 
than our even-aged single species forests. However, our 
study did cover a wide range of stand ages, which still 
represents considerable variation in crown size and shape.

Our results indicate that the new methodology 
presented here allows the effects of tree detection 
algorithm and operator on accuracy to be minimised. 
The ground calibration method applied to LiDAR 

images gave accurate estimates of tree count (within 
6%) independent of stand age and stocking at two 
contrasting sites, for two operators. Image calibration is 
a highly desirable alternative to ground calibration as it 
avoids the costs and risks associated with installing the 
ground calibration plots. Error with image calibration 
was within 11% for LiDAR images, which might be 
acceptable for some applications. 

Reduced subjectivity
Operational methods for tree counting from images 

are recognised as difficult to achieve. International 
research shows that bias, largely due to operator inputs, 
and difficulty in quantifying error on operational-sized 
areas are barriers to progress. The new methodology 
developed in this project has provided practical and 
effective solutions to these issues. The use of calibration 
plots was the key to addressing subjectivity. Using 
ground calibration effectively eliminated subjectivity, 
while image calibration restricts subjectivity to operator 
interpretation of the images. Operator interpretation 
was also significantly improved by using LiDAR images. 
Reducing operator input not only reduced subjectivity, 
but also the image-processing time through increased 
automation of the process. 

Error is quantified
Another key feature of the methodology was the 

provision of a measure of error, which is an important 

Figure 2b: Region from LiDAR image for Stand 4 at site B showing tree-tops detected by the algorithm in black and those inside the 
calibration plot circled in yellow. Delineated crown boundaries are in green and extents of tree growing spaces are in red
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feature in operational use to provide confidence 
intervals on estimates. However, it will also be of huge 
benefit in the ongoing development of tree detection 
research. The methodology provides the means to 
quantify error using simple ground plots, applicable 
to any forest type. Such a cost-effective approach will 
also allow evaluation of more and larger test areas. This 
practical error measure could accelerate development of 
tree detection research by providing the critical tool to 
quantify algorithm and methodological improvements.

A robust method
Accuracy was only very slightly lower at Site B, 

despite notably lower LiDAR pulse return density and 
more complex terrain. Both of these factors would be 
expected to reduce accuracy, but the effect was only 
minor and we can observe that a LiDAR pulse density 
of five pulses per square metre is sufficient for tree 
counting, even on steep terrain. No significant effect 
of operator or stand age (stocking) was observed on 
accuracy in this study. However, experience has shown 
us that older stands are most difficult to obtain accurate 
counts on, while stands that have just been thinned 
and with clearly defined canopies are the simplest for 
tree counting. Evaluation of more extensive data sets 
will help quantify differences in tree counting accuracy 
across stand age, but it does seem the effect is not large. 

Use in operational inventory

An accurate tree counting method is a significant 
achievement, but the original question of how to provide 
an efficient, accurate and cost-effective assessment 
of woodlots, or larger areas, still requires definitive 
answers. Tree counts derived from an image alone would 
have practical application in producing stocking maps, 
useful for assessing establishment and for planning 
and evaluating thinning operations. However, for mid-
rotation and pre-harvest inventory additional ground 

data, such as diameters and stem quality cruising, will 
probably be required. In that case it may be quite feasible 
to incorporate measurement of ground calibration plots 
as part of the inventory workflow while in the stand. In 
this way the higher accuracy of the ground calibration 
method (6%) can be taken advantage of. 

There are a number of options for incorporating 
tree counts within an inventory system. One approach is 
to implement single-tree inventory, requiring selection 
of individual trees for ground measurement. This 
could be done by selecting trees at random from the 
tree detection results. Unfortunately GPS error under 
canopy, often of the order of 5 m or more, will make 
it difficult to reliably locate those trees on the ground 
(Wing & Eklund, 2007). A further issue is that single-
tree inventory would increase the relative overhead 
of navigation and set-up/pack-down time to take tree 
measurements. To address this single trees might be 
measured more efficiently in ‘clusters’ such as plots 
or transects, but more research is required to find the 
right balance between statistical benefits and practical 
ground procedures (Gordon & Pont, in press). Tree 
counts might also be incorporated into more complex 
inventory systems such as double sampling. 

Future work
The measure of error provided by the methodology 

will assist further development of the tree counting 
process. LiDAR data can be artificially thinned and 
the effect on error used to define the minimum LiDAR 
pulse density required for tree detection (Watt et al., 
2013). Further research should also examine the size 
and numbers of calibration plots required to achieve 
a desired level of accuracy with the methodology. 
Accuracy of ground calibration (6%) might be improved 
if calibration plot locations were more accurate because 
GPS error under canopy is contributing to the final 
error on tree count. 

The higher error of the image calibration method 
(11%) was due to subjectivity in operator interpretation 
of images. Orthophotos are affected by a number of 
issues related to lighting; one example is the tops of 
tree in gullies completely disappearing in large areas 
of shadow. LiDAR images are substantially better than 
orthophotos in this respect, but there is still difficulty 
in interpretation of the larger complex crown shapes in 
older stands. The crowns of small trees can merge into or 
be hidden by other crowns, and large branches growing 
out from larger crowns such as on edge trees can appear 
as separate trees. While we are unlikely to completely 
eliminate these problems, there may be opportunities to 
develop image creation and operator training to reduce 
errors in interpretation. The cost benefits of being able 
to carry out tree counting solely on images make this a 
desirable goal for ongoing development. 

There is new research underway to apply the tree 
detection methodology to obtain tree level crown 
metrics from the LiDAR with the potential to improve 
the accuracy of estimates obtained with area-based 
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Figure 3: Error on tree count, root mean square error as a 
percentage of total count for the two forest sites, and the two 
calibration methods
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methods. A pilot study also showed the potential to 
estimate standing tree stiffness from tree level crown 
metrics extracted from LiDAR after tree detection (Pont 
et al., 2012b).Those metrics are derived from analysis 
of the shape of the crown as delineated by the tree 
detection process as shown in Figure 2b. 

Now that we have demonstrated a viable tree 
detection system the challenge is to identify and develop 
applications for New Zealand forest management. 
However, we must take into account the bigger picture. 
New technologies in the form of tripod mounted and hand-
held terrestrial LiDAR units, photogrammetric scanning 
techniques (Morgenroth & Gomez 2014), and unmanned 
aerial vehicles (UAVs) are rapidly emerging. Such tools also 
show considerable promise for applications in forestry and 
increase the scope of the challenge, which will require the 
fusion of basic science and forestry knowledge to forge 
successful solutions based on the opportunities they offer.
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