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Abstract

Compression wood is chemically different from 
normal, opposite and flexure wood. Based on these 
chemical differences, we have investigated several 
techniques that could potentially be developed into 
methods that could be used in commercial situations to 
identify and segregate compression wood. The leading 
contender is near infrared spectroscopy.

Introduction 

Foresters are aware that radiata pine plantations 
grown for longer periods produce stiffer, more stable 
wood. Yet, there are increasing financial incentives to 
harvest plantations earlier, resulting in wood of poorer 
quality. This problem arose from radiata pine breeding 
focusing on form and growth rate, with little attention 
given to wood quality (Walker, 2013). To address this, 
the University of Canterbury and the University of 
Auckland collaborated on a project with two broad aims. 

The first aim was to select, at an early age, 
radiata pine clones and families with superior wood 
qualities, i.e. longitudinal stiffness (elastic modulus) 
and longitudinal dimensional stability. The second 
aim was to understand the chemical reasons for high 

longitudinal dimensional instability and, based on this 
chemistry, to devise practical ways of finding wood with 
dimensional instability. Some of the selection work 
has been described (Apiolaza et al., 2011, 2011a, 2013; 
Chauhan et al., 2013). Here we describe the results of 
the second aim concerning the chemical studies.

Different wood types

Does the wood of sapling trees grown upright, tilted 
or swayed differ in stiffness, dimensional instability 
and chemistry? Sapling radiata trees were grown either 
upright, tilted at 45° to the vertical (Figure 1), or swayed 
on a specially built rocking machine that simulates the 
trees swaying in wind. The tilted saplings developed 
severe compression wood on the undersides of their 
stems. This was evident by the dark reddish coloration 
of the wood (Figure 1), although wood coloration is 
not a reliable guide to the presence of compression 
wood and the chemical reasons for this coloration are 
unknown (Timmell, 1986). 

The tilted trees developed another type of wood, 
referred to as opposite wood, on the opposite side of 
the stem, which was separated from the compression 
wood by cutting. Opposite wood shows anatomical 
similarities to the wood of trees growing upright, i.e. 
to normal wood. Trees that sway to and fro in the wind 
are known to develop a special type of wood referred to 
as flexure wood (Telewski, 1989). This can show some 
anatomical features of compression wood, but little 
research has been done on its chemical composition. 

Stiffness

The seedlings were grown for eight months before 
testing. All four wood types had low longitudinal stiffness 
(elastic modulus), which confers flexibility to the sapling 
stems, allowing them to sway in the wind. This stiffness 
is related to the structure and chemistry of the wood cell 
walls. In softwoods, such as radiata pine, most of the 
wood cells are of a cell type known as a tracheid. When 
fully formed, these have thick walls mostly consisting of 
a secondary wall with three layers known as S1, S2 and 
S3 (Dinwoodie, 1975; Harris & Stone, 2008). These walls 
contain thin strands (microfibrils) made up of cellulose, 
which is a polymer of the sugar glucose. In contrast to 
the thinner S1 and S3 layers, the cellulose microfibrils 
of the S2 layer all have the same orientation and the 
angle of these relative to the cell axis is the microfibril 
angle. Importantly, this angle is inversely related to 
longitudinal stiffness (Cave, 1968). 

Figure 1: Radiata pine saplings growing tilted. Insets show the 
compression (darker coloured) and opposite wood types that 
develop
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Instability

The longitudinal dimensional instabilities of the 
normal, compression, opposite and flexure woods were 
determined by rewetting after drying. Interestingly, 
only compression wood was different. It swelled three 
times more than the other wood types. In addition 
to low stiffness, high microfibril angles are associated 
with high dimensional instabilities (Meylan, 1968). 
However, high microfibril angles are not sufficient for 
swelling (or shrinkage) to occur, and other components 
of the tracheid walls besides cellulose must be involved. 

Wet chemical analyses

The chemical compositions of the four wood 
types were examined using traditional wet chemical 
techniques (Brennan et al., 2012). In wood cell walls, 
the cellulose microfibrils are embedded in a complex 
mixture of polymers including other sugar polymers 
(polysaccharides), sometimes known as hemicelluloses, 
as well as lignin, an aromatic polymer that is made up 
of phenolic units containing benzene rings. The wall 
polysaccharides were analysed by breaking the links 
between the individual sugars. The different sugars 
released were then separated and quantified. Much of 
the glucose released was from cellulose, but other sugars 
were from the various hemicelluloses. These sugars 
included arabinose, xylose, galactose and mannose. 

Interestingly, the compression wood differed markedly 
from the other wood types in the percentages of the 
different sugars released (monosaccharide composition) 
(Figure 2). Compression wood yielded three times more 
galactose than the other wood types, which did not differ 

significantly. Moreover an earlier wet chemical study on 
butt logs from a 24-year-old plantation of loblolly pine 
(Pinus taeda), a species closely related to radiata pine, 
also implicated a galactose-containing polysaccharide in 
longitudinal instability (Floyd, 2005). The lignin content 
of the radiata wood types was determined and again the 
compression wood stood out; it contained more lignin 
than the other wood types, which had similar lignin 
contents to one another (Figure 2). 

Using nuclear magnetic resonance 
spectroscopy

The fine detail about the different wood types, 
especially about the galactose-containing polysaccharide 
and the lignin in the compression wood, was obtained 
by nuclear magnetic resonance (NMR) spectroscopy 
using a technique pioneered by Professor John Ralph (a 
New Zealander, ex FRI) of the University of Wisconsin, 
Madison, in the United States (Kim & Ralph, 2010). 
This technique gave finger prints for the different wood 
types and showed two very distinctive differences in 
the compression wood: 

•	 First, the galactose-containing polymer is a 
(1→4)-β-galactan that occurs in far larger proportions 
in compression wood. This polysaccharide is made 
up of long chains of galactose molecules, each being 
joined to the next through the hydroxyl group on 
carbon four. It is a flexible polysaccharide shaped 
like a wire spring and is known to absorb water 
and swell (Rees & Scott, 1971). It could, at least 
in part, account for the instability of compression 
wood. The peaks produced by this polysaccharide 
are larger in the finger prints of compression wood 
than the other wood types (Figure 3) 

•	 Second, the lignin in compression wood contains 
small amounts of p-hydroxyphenyl units (H-units), 
which are not found in the lignin of the other 
wood types.

Locating the (1→4)-β-galactan in the tracheid wall

The exact location of the (1→4)-β-galactan in the 
tracheid walls of the compression wood was determined 
by using a particular type of monoclonal antibody (LM5) 
produced by Professor Paul Knox and his colleagues at 
the University of Leeds in the United Kingdom and 
which binds only to (1→4)-β-galactans (Jones et al., 
1997). Thin sections of wood were treated with this 
antibody (primary antibody) and then with a second 
antibody (secondary antibody), which is labeled with 
a very small gold particle (colloidal gold), and which 
binds specifically to the primary antibody (Figure 4). 

The section was then examined in a transmission 
electron microscope. The gold particles appear as black 
dots and reveal the locations of the (1→4)-β-galactans 
(Altaner et al., 2010). This showed they were in the outer 
part (away from the cell lumen) of the S2 layer (Figure 
5), a region known to contain a high concentration of 
lignin (Donaldson & Singh, 2013). 

Lignin Arabinose Xylose Galactose Glucose Mannose

0

5

10

15

20

25

30

Percentage

35

40

45

OW

CW

Figure 2: Chemical compositions of opposite (green) and 
compression (purple) woods. Red arrow indicates the much 
higher galactose content of compression wood
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Figure 4: Principle involved in locating (1→4)-β-galactans in tracheid cell walls using the monoclonal antibody LM5 (primary antibody) 
and secondary antibodies labeled with gold particles
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Figure 3: NMR finger prints of opposite and compression woods. Boxes are around peaks due to (1→4)-β-galactans, which  
are larger in the compression-wood finger print
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What does this mean for foresters?

Clearly compression wood is very different from 
normal, opposite and flexure wood. Based on these 
chemical differences, we have investigated several 
techniques that potentially could be developed into 
methods that could be used in commercial situations to 
identify and segregate compression wood. The techniques 
include a method based on the LM5 antibody (immuno-
dot assay method) (Chavan et al., unpublished), a 
method based on heating wood in the absence of air and 
analysing the fragments (pyrolysis gas-chromatography 
mass spectrometry) (Brennan et al. 2014), and two types 
of spectroscopy (McLean et al., 2014): 

•	 Attenuatated total reflectance Fourier transform 
infrared spectroscopy (ATR-FTIR)

•	 Infrared (NIR) spectroscopy.

Although they vary in cost and speed, all of these 
methods were successfully used to identify compression 
wood, and all could be used for breeding trials. However, 
where speed and on-site availability are crucial, such 
as in saw mills, the leading contender must be NIR 
spectroscopy. Although considerable challenges remain 
before it can be implemented commercially (Harris & 
Altaner, 2013), we have reasons for being optimistic. 
NIR is installed in-line on the live-chain in meat works 
(Reis, 2013) and Solid Wood Innovation has trialled the 
technology for two wood-based applications:

•	 Rejecting resinous wood in appearance manufacturing

•	 As one sensor in a multi-sensor segregation system 
for lumber based on its propensity to warp in service.
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