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Examination of mean top height definitions 
and height estimation equations for Pinus 
radiata in New Zealand 
Richard C. Woollons* 

Abstract 
For Pinus radiata in New Zealand mean top height is 

essentially defined and calculated via one definition and 
the so-called Petterson equation. A study shows that 
changing the definition to one used overseas has very 
little impact on top height values. The Petterson model 
appears to give unbiased estimates of tree height. 

The basic relationship between tree height and 
diameter is not particularly precise, especially at low 
stockings. To ensure a satisfactory model, it is important 
that the sample trees have a wide range in diameter. 

Changing the power parameter in the Petterson 
equation has a negligible effect. Adopting alternative 
height/diameter equations gives a minimal improvement 
in precision in one case but significantly less precision 
with the other. 

Introduction 
Woollons (2000) discussed a series of permanent 

sample plots established by the former forestry company 
NZ Forest Products, now a part of Carter Holt Harvey 
(CHH) Limited. They represented a subset of a database 
begun in 1933 that was later expanded to over 800 
permanent sample plots. For many years the plot 
measurements were maintained and processed with a 
computer system built by company personnel at Tokoroa, 
but recently the records were moved to the Forest 
Research (FR) system at Rotorua. At the time of the 
transfer it was realised that former estimates of mean top 
height would likely change because of (a) two different 
definitions (given below) ofthe statistic and (b) different 
formula for estimating tree height when no direct 
measurement existed. 

The CHH system is now defunct and it is purely 
academic to pursue a formal comparison of the two 
methods. However, it seems timely to review what is 
essentially the national system for estimating mean top 
height and ascertain whether more efficient or precise 
methods may be available. Mean top height should not 
be confused with predominant mean height (PMH), given 
by Goulding (1995): 
The average height ofthe tallest tree, free of malformation, 
in each 0.01 ha plot within the stand. 

In this contribution the effects of the two mean top 
height definitions and the FR estimation procedure are 
explored. The methodology is examined with data from 
an extensive thinning trial and the results are discussed. 

Background and Definitions 
In even aged stands, the basic relationship between 

tree height and diameter (for a given age) is sigmoid in 
shape (Curtis 1967) although in practice a monomolecular 
form very usually suffices (Carron 1968) because 
measurements are normally not collected prior to the 
point of inflexion. For radiata pine the degree of curvature 
is not acute and sometimes nearly approaches a straight 
line especially at lower stockings. Fig. 1 shows the 
relationship at four ages, the data coming from an 
intensive Pinus radiata thinning trial discussed by Whyte 
and Woollons (1990). 

Figure 1 Relationship between tree height and diameter 
at four ages. 
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The definition of mean top height used by FR is 
that adopted by the New Zealand Institute of For­
estry, and given by Goulding (1995): 
The height predicted by the Petterson height/dbh curve 
for a dbh corresponding to the quadratic mean dbh of 
the 100 largest trees per hectare (based on dbh) in a stand. 
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A Petterson (1955) equation is given by: 
H = 1.4 + (P + a/D)"25 

where H = tree height (m) 
D = diameter at breast height (cm) 
P, a = regression coefficients 

(i) 

For a given plot and for a particular measurement only 
that data (the height : diameter pairs) are used in the 
estimation ofthe coefficients in (1). 

Equation (1) can be readily manipulated to a straight-
line linear form 
Y = D/(H - 1.4)°4 = (a + pD) (2) 

where a and p can now be estimated by simple least 
squares formulae (for example, Draper and Smith 1998, 
p. 24-25). It is partially this property that makes (1) so 
useful especially in a historic sense when computing 
capability was limited. 

An alternative definition of mean top height and that 
formerly used by CHH is that used in Great Britain 
(Johnston & Bradley 1963): 
Mean top height is the average height ofthe 100 largest 
trees per hectare (based on diameter). 

From the two definitions there are two ways of 
estimating mean top height. For a specific sample 
plot, the applicable top diameter trees need to be iso­
lated; for example, if a sample plot occupies O.l hect­
are, then the biggest 10 trees by diameter represent 
the sample top diameter trees. Next, the height : di­
ameter data from the sample plot are used to form a 
predictive equation of tree height, using model (1). 
We now have two options to estimate top-height. 
(a) FR definition. Estimate top height as the predicted 

height given by equation (1) for a diameter correspond­
ing to the quadratic mean of the top diameter trees. 

(b)CHH definition. For the top diameter trees that do 
not have measured heights, predict them through 
(1) and estimate mean top height by the average of 
the actual or predicted tree heights. 

The crucial difference lies in the averaging pro­
cess. For FR, the diameters are averaged and one 
height is predicted. For CHH, all the top diameter 
trees have assigned heights (measured or predicted) 
and these are averaged. 

Methods and Results 
The Petterson equation was examined empirically by 

applying it to part of the data from 'Experiment 695' a 
thinning experiment reported by Woollons and Whyte 
(1990). The trial contrasted seven residual stockings: 
200, 300, 400, 500, 600, 700 and 1200 stems/ ha in four 
randomised blocks. Measurements were available, either 
annual or biennial, from age 7 to 30, but this study 
evaluated mean top height only at ages 12, 18, 24 and 
30. At each measurement time and for all stockings, 
between 6 and 13 height: diameter pairs were obtained 
in each of the twenty-eight 0.1 ha plots. 

Equation (2) was fitted to the data (for each plot and 
age) by ordinary least squares and used to predict top 
height in terms of the two definitions. Given the limi­
tations of a small number of residuals for each model, 
there were no clear signs of bias. Table 1 gives the 
average (over the four replications) differences in top 
height estimation calculated from the definitions and 
procedures above for the respective stockings and ages. 

Table 1: Average differences (m) of top height according 
to CHH and FRI definitions. 

Age (years) 
Stocking 12 18 24 30 

200 0.07 0.02 -0.01 -0.10 
300 -0.02 0.08 0.11 0.01 
400 -0.05 -0.07 0.01 -0.14 
500 0.05 -0.07 -0.11 -0.07 
600 -0.10 -0.05 -0.18 0.00 
700 0.02 0.05 -0.07 -0.18 

1200 -0.04 -0.05 -0.20 -0.23 

An analysis of variance for these differences showed 
weakly significant (p < 0.06) effects for both stocking 
and age. There is some trend for the differences to become 
bigger with the higher stockings and older ages but in 
absolute terms the differences are trivial. 

The R2 values derived from (2) are grossly inflated 
since the diameter variable appears on both sides ofthe 
equation. The models were recalculated using (1) using 
non-l inear least squares for which approximate 
(Ratkowsky 1990) R2 values are available. Table 2 gives 
the respective average R2 figures for each stocking and 
treatment, together with the corresponding average 
standard error of the mean statistic. An analysis of 
variance for the plot multiple correlation data showed 
very significant (p < 0.0001) stocking effects, but nothing 
for stand age or the interaction. The standard error figures 
are more difficult to interpret because they become inflated 
at later ages partly through the absolute size ofthe trees. 
Within ages, there are no significant differences. 

Table 2: Average (over 4 replications) R2 values and 
standard error statistics ofthe derived equations. 

Age (years) 

Stocking 12 18 24 30 

200 

300 

400 

500 

600 

700 

1200 

0.29(0.35) 

0.43 (0.34) 

0.58 (0.29) 

0.49 (0.33) 

0.68 (0.29) 

0.52 (0.33) 

0.70(0.30) 

0.22 (0.45) 

0.59 (0.42) 

0.60 (0.44) 

0.54 (0.44) 

0.70 (0.37) 

0.52 (0.48) 

0.66(0.41) 

0.31 (0.56) 

0.39 (0.63) 

0.46 (0.60) 

0.54 (0.63) 

0.72 (0.56) 

0.61 (0.71) 

0.66(0.731 

0.41 (0.52) 

0.64 (0.56) 

0.61 (0.52) 

0.64 (0.56) 

0.54 (0.66) 

0.67(0.71) 

0.71 (0.731 

Table 3 lists the average parameter values from model 
(1) for each age and stocking. Analyses of variance 
showed a highly significant (p < 0.0001) age effect for 
the parameter |3 but the effect of stocking and the 
interaction is non-significant. No significant effects 
emerged for the parameter a. 
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Table 3: Average parameter values of the Petterson 
equation. 

Stocking 

200 

300 

400 

500 

600 

700 

1200 

12 

P 
0.289 

0.278 

0.292 

0.294 

0.281 

0.287 

0.289 

a 

1.50 

1.58 

1.17 

1.07 

1.31 

1.14 

0.90 

Age (years) 

18 

P 
0.257 

0.233 

0.244 

0.249 

0.242 

0.250 

0.242 

a 

0.93 

1.64 

1.09 

0.90 

1.15 

0.85 

0.86 

24 

P 
0.223 

0.219 

0.218 

0.220 

0.217 

0.216 

0.215 

a 

1.40 

1.24 

1.14 

1.08 

1.09 

1.16 

1.08 

30 

P 
0.210 

0.202 

0.203 

0.203 

0.211 

0.200 

0.199 

a 

1.15 

1.35 

1.28 

1.18 

0.91 

1.41 

1.37 

The original Petterson equation used an exponent 
of three; Schmidt (1967) reported using a power of 
2.5 instead. How it came to be changed to 2.5 in New 
Zealand I have not been able to establish. The data 
were re-run using equation (1) but successively using 
an exponent of 1.5 to 4.5 in one-half increments (It 
would have been neater to estimate the power term 
by nonlinear least squares but the small samples made 
this virtually impossible). There was a slight trend 
for powers of 3.0 and 3.5 to give smaller error sum-
of-squares but in absolute terms the differences were 
very small. 

Two alternative candidate equations to the Petterson 
are the log-reciprocal (Schumacher 1939) model: 

H = 1.4 + exp(a + p/D) (3) 
that can be estimated by ordinary least squares through 

ln(H-1.4) - a + p/D (4) 
and the so-called Petterson 2 formulation 

H = 1.4 + (P + aD) 2 5 (5) 
that transposes to 

D/(H-1.4)0 4 = (a + p/D) (6) 

Model (3) and (5) were fitted to the data and compared 
to the performance of (1). The average residual mean 
squares for the three models are (a) Petterson: 2.84 (b) 
Petterson 2: 3.31 and (c) log - reciprocal : 2.81 
respectively. Paired t - tests between (a) and (b) and (a) 
and (c) were strongly significant, (p <0.005 and 0.0001) 
respectively. 

Discussion 
It will be noticed that the relationship between tree 

height and diameter at breast height is not especially 
precise (Schreuder et al. 1993), dominant height being 
relatively unaffected by within stand differences in 
stocking (as opposed to diameter) but likely to be subject 
to genetic and micro-site variation. Moreover, the actual 
measurement of height on mature trees, per se, is open 
to some error (Avery & Burkhart 1994). 

Goulding (1995) warned that a poor choice of height: 
diameter trees can produce an inverted curve with larger 
diameter trees having lesser-predicted heights. This 
occurred with two of the 128 models assayed here; 
both were at age 30 where the negative slopes were 

close to zero so the degree of bias was not large. More 
generally however, a potential problem is that very 
suppressed trees beyond the range of the sample may 
be assigned vastly inflated height estimates. This can 
usually be avoided by obtaining a wide range of di­
ameter trees in the sample. 

It is reassuring that usage of either definition makes 
essentially no difference to the estimation of mean top 
height. Initially, I found this slightly surprising and 
had expected larger differences by virtue of utilising a 
quadratic mean instead of the arithmetic mean. For 
example if we consider the numbers 1 and 2 then the 
quadratic mean is 1.58 but the arithmetic mean is only 
1.50. (The quadratic mean cannot be smaller than the 
arithmetic mean). This difference is illusionary. Fora 
larger sample and where the range ofthe data is relatively 
small (as will be the case with top element diameters) 
then the two means are virtually the same. 

The R2 values in Table 2 confirm that the precision of 
height/diameter regressions are not high. Beside the 
reasons given above precision is also limited by the small 
sample sizes usually employed in these regressions. The 
model formerly used by CHH was: 

ln(H-1.4) = a + p/D + YA/T + 8/VT.D (7) 
where in (7) 

T = stand age in years 

For a given plot and as measurements accumulated, 
pooled data could be progressively utilised to estimate 
the model parameters so that at later ages a sample size 
of over 100 was common. A drawback of (7) however, 
was that predictions at older ages are influenced and 
weighted by data sometimes decades younger so that 
unless (7) fitted the data very well a small element of 
bias could be present (Woollons, CHH data). From Table 
2 it is evident that prediction of tree height at low 
stockings is especially prone to low precision. While 
physiological reasons might be advanced to explain this 
in part, for example, more wind exposure (Maclaren et 
al. 1995) it is more likely to be caused by the narrow 
range of diameters usually present with low stockings. 
Basic regression principles dictate that a good predictive 
model will be obtained if there is a wide range in 
predictor values (Draper & Smith 1998) 

The parameter p in the Petterson equation represents 
an asymptote or an upper limit to growth. Because of 
the reciprocal form of (1) smaller values ofthe parameter 
represent a higher asymptote. Logically, (from Table 3) 
the effect of age is highly significant as lower p values 
are successively estimated. There is a suggestion that 
the 200 stems/ ha treatment has lower asymptotic values 
perhaps indicative ofthe lower top height development 
noted for low stockings by Woollons et al. (1994) and 
Maclaren et a l (1995). 

The ability of the power parameter in the Petterson 
equation to assume a range of values and give virtually 
identical accuracy is explained by the structure of (1). 
The power term is strongly correlated to the other 
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two parameters, so that any small change in the former 
will invokes small differences to the latter without 
any significant loss in predictive power. 

The results of adopting other height/diameter mod­
els are reassuring in that the current equation clearly 
behaves well. The so-called Petterson 2 equation per­
formed conspicuously worse, occasionally giving er­
ror mean squares es t imates double that of the 
Petterson. While the log-reciprocal equation achieved 
a lower average error mean square, in absolute terms 
it is very small (0.8 %). Moreover, adoption of this 
equation would raise problems of back-transforma­
tion of logarithms and possible biases in prediction 
(Baskerville 1972, Flewelling & Pienaar 1981). 

Conclusions 
The Petterson equation as used by Forest Research 

gives an adequate prediction of tree height. Every care 
should be given to ensure a wide range of diameters is 
included in the sample trees. There is no evidence that 
changing the power term or adopting an alternative 
regression model would give practically better results. 
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