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Growth models are vitally important for forest management 
planning. Forecasting the growth and yield of individual stands 
is a prerequisite for planning the management of forests at 
any level. Therefore managers need to have an appreciation 
of the various growth modelling techniques and their limita- 
tions. 

More than a review of growth models, this is an examination 
of basic principles as I see them. An exhaustive review would 
take far too much space, would probably be of more interest 
to the specialist, and has already been done to some extent 
in some of the publications cited below. Instead, I have aimed 
at a contribution toward a better understanding of the relevant 
literature. 

The focus is on modelling techniques appropriate for even- 
aeed stands. The references selected to illustrate the various " 
methods are a more or less random sample. However, follow- 
ing tradition, only publications in English are included, and 
the sample is heavily biased toward the author's own work. 

New Zealand growth models have been reviewed by Goul- 
ding, 1986. 

FOUNDATIONS 
"Static" (Alder 1980) growth models attempt to predict 
directly the course over time of the quantities of interest 
(volumes, mean diameter). Examples of these are the Forestry 
Commission Management Tables (Johnston and Bradley 
1963) and the South Australian Yield Tables (Lewis et al. 
1976). This approach can give good results for unthinned 
stands, or for stands subject to a limited range of standardized 
treatments for which long-term experimental data are avail- 
able. 

Dynamic models are needed for forecasting over a wider 
range of tending regimes (initial spacing, various thinning and 
pruning sequences and intensities). Instead of modelling 
directly the course of values over time, these models predict 
rates of change under various conditions. The trajectories 
over time are then obtained by adding or integrating these 
rates. 

Growth modelling may be clarified through the use of some 
very simple basic concepts that have been fundamental in 
other disciplines for a long time. Essentially, the evolution 
over time of any system can be modelled by specifying: 
(1) An adequate description of the system at any point in 

time (the "state" of the system). 
(2) The rate of change of state as a function of the current 

state and of the current value of any external control 
variables (a "local transition function"). 
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The state must be such that, to a sufficient degree of approx- 
imation: (a) future states are determined by the current state 
and future actions, and (b) any characteristics of interest can 
be derived from the state. The state is often described by a 
fixed number of variables (state variables, forming a state 
vector). It can also include more complicated mathematical 
objects such as infinite sequences and functions. Transition 
functions are typically given as a system of differential or 
difference equations, describing the rate of change of each of 
the state variables. Alternatively, they might be specified 
graphically, or through a more or less involved computational 
algorithm. 

Growth modelling may be clarified through the use of 
some very simple basic concepts that have been funda- 
mental in other disciplines for a long time. Essentially 
the evolution over time of any system can be modelled 
by specifying: 
(1) An adequate description of the system at any point 
in time (the 'ktate" of the system). 
(2) The rate of change of state as a function of the current 
state and of the current value of any external control 
variables (a 'local transition function')). 

Let us illustrate these principles in the context of growth 
modelling. First, control variables usually need not be 
included in the transition function. Silvicultural treatments 
(e.g. thinnings) normally happen at discrete points in time, 
causing an instantaneous change of state. We can then model 
the changes of state in between treatments as a function of 
the current state only, without any control variables. 

Consider the mean top height, H,  as a state description for 
a stand. This satisfies condition (a) above, since the rate of 
change of H (height increment) can be modelled adequately 
as a function of the current H: AH = f(H), or dWdt = g(H). 
The course of H over time can be obtained by accumulating 
or integrating the increments, starting from a given initial 
height. If we are interested in the volume per hectare, H is 
not a good state description according to condition (b): the 
volume depends also on the basal area in addition to H. The 
model may, however, be adequate for other purposes, e.g. 
for site quality classification. 

Consider now the total volume per hectare, as a state des- 
cription. If we are interested in forecasting this quantity, it 
obviously satisfies condition (b) (although it would probably 
not be sufficient if we were also interested in merchantable 
volumes). However, condition (a) fails because, over a wide 
range of treatments, the volume increment would be different 
for stands having the same volume but very different heights 
andlor stockings. 

It appears that a one-dimensional state is inadequate for 
growth modelling. Consider then the state being described by 
three variables: basal area (G), stems per hectare (N), and 
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top height (H). That is, the state is the three-dimensional 
vector x = (G, N, H). In many instances this satisfies condition 
(a), the changes in x for a wide variety of treatments being 
well approximated by a function of x, Ax = f(x), that is, by 
a system of three equations: A G  = f l  (G,N,H), AN = fi 
(G,N,H), AH = f3 (G,N,H). Often this state vector is satis- 
factory also according to (b), with volumes of various pro- 
ducts, values, and size distribution parameters being estimated 
by regression, on G ,  N, and H. Notice that any one-to-one 
transformation of this vector would serve as well, for example, 
mean diameter, average spacing, and top height. In some 
circumstances, however, a more detailed state description may 
be necessary. 

In addition to the transition functions describing growth 
and mortality, most growth models also include several auxi- 
liary relationships. These usually include equations to estimate 
the instantaneous change in the state variables caused by 
treatments (e.g. the change in basal area resulting from thin- 
ning a certain number of trees per hectare), and to estimate 
volumes of various products given the state. 

Forecasting may be done by using integrated forms of the 
local transition function, or through numerical integration or 
accumulation. It is useful not to confuse a growth model with 
its computer implementation. Different implementations of 
the same model may be appropriate for different applications 
(long-term forecasting, silvicultural regime evaluation, up- 
dating of stand records). 

For more on the state-space approach in growth modelling 
see Garcia (1979). Incidentally, these ideas can be applied to 
any dynamic system, and in particular, to models for forest 
management planning (Garcia 1984b). 

TYPES OF GROWTH MODELS 

Dynamic growth models can be classified according to the 
levcl of detail in the state description, as follows: 

Stand-level growth models describe the state of the stand 
by a few variables representing stand-level aggregates such as 
basal area, mean diameter, volume per hectare, stems per 
hectare, average spacing, top height, etc. Sometimes, parame- 
ters of diameter andlor height distributions are also used, 
although more often these are estimated a posteriori as func- 
tions of the state variables. The transition function is usually 
given as a system of difference or differential equations for 
the rates of change of the state variables (growth and morta- 
lity). Graphical methods have also been used. 

In most situations, this type of model is likely to be the 
most appropriate for management planning of forest plantat- 
ions. Some examples are Beekhuis (1966), Alder (1980), and 
Garcia (1984a, 1988). Other work published between 1973 
and 1976 is listed, with abstracts, in CAB (1977). 

Tree position models, or distance-dependent individual tree 
growth models, use a much more detailed state description. 
This includes the location (co-ordinates) and diameter, and 
sometimes height and crown dimensions, of every tree in a 
sample plot. Growth and mortality probabilities for each tree 
are expressed as functions of their dimensions and of the 
relative position and dimensions of their neighbours. Repre- 
sentative examples include Newnham (1966,1%8), Van Laar 
(1969), Mitchell (1975), and Tennent (1982). See also Dudek 
and Ek (1980). 

These models can be useful as research tools to study prac- 
tices affecting tree spatial relationships in ways that stand-level 
variables cannot describe satisfactorily; for example, thinning 
by rows or other systematic patterns, management of mixed 
species stands, or heavy selective pruning. They may also 
provide insights into stand dynamics that could contribute to 
the development of better stand models. Direct management 
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use of these models is hampered by their high computational 
cost and by the very detailed inventory information that they 
would require. When used in practice, often a stand-level 
description is used for generating a fictitious sample of indivi- 
dual tree locations and sizes, which is then used as an input 
to the model. This is conceptually equivalent to a stand-level 
growth model, with a rather complicated transition function. 

Distance-independent individual tree growth models des- 
cribe the state through individual tree data, but without spe- 
cifying tree locations. Strictly speaking, this class of model 
should include only those based on a list of the actual trees 
in a sample plot, with their dimensions, as in Goulding (1972). 
It is common, however, to include in this class models where 
the state is a size distribution (usually a diameter distribution) 
specified by a stand table (histogram) or by a fixed number 
of distribution quantiles (Clutter and Allison 1974, Alder 
1979), although it can be argued that this is a stand-level 
description. Additional references are given in Dudek and 
Ek (1980). 

These models occupy an intermediate position between the 
stand-level and the tree-position models in terms of state des- 
cription detail, computational cost, and information require- 
ments. This detail is needed for modelling uneven-aged stands. 
With reasonably homogeneous forest plantations, however, 
the additional detail may be largely redundant. 

A potential difficulty with tree size distributions arises from 
the spatial correlation of tree sizes (Garcia 1984a). Over very 
short distances there is usually a negative correlation due to 
competition. Over longer distances, microsite similarity causes 
a positive correlation, decreasing with distance. This implies 
that a tree size distribution must vary with the area of land 
considered. In particular, the variance must vary with plot 
size, and distributions derived from sample plots are unlikely 
to apply to whole stands or compartments. Curiously, these 
considerations have generally been ignored by growth model- 
lers although their importance has long been recognized in 
forest sampling. The practical significance of these effects for 
growth prediction is yet unknown. Until this is elucidated, 
however, it seems prudent to use tree size distributions with 
some care. 
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ESTIMATION 
Most growth model parameter estimation is done using linear 
or nonlinear regression. Several characteristics of growth 
modelling data may cause difficulties because of violation of 
statistical assumptions underlying regression techniques. 

One problem often mentioned is the correlation between 
repeated measurements of permanent plots (Sullivan and Rey- 
nolds 1976, Ferguson and Leech 1978). This correlation arises 
because the value of a variable at the time of a measurement 
subsumes the values at previous measurements. The effect is 
more important for the development of static models. In 
dynamic models the dependent variables in the regressions 
are usually periodic increments, which are more nearly inde- 
pendent than the actual measurements. Some correlation is 
still present between successive increments for the same period 
in different plots due to the action of similar weather condi- 
tions. 

Another problem is the multiresponse nature of the models. 
That is, the models often consist of equations where the depen- 
dent variables may be correlated, and where parameters in 
different equations may be shared or may be functionally 
related. In this situation, fitting the equations one at a time 
may not be satisfactory, if at all possible. Hunter (1967) dis- 
cusses the problem and some solutions in the context of chem- 
ical kinetics. Buykhart (1985) reviews approaches that have 
been tried in growth modelling. Bates and Watts (1985) have 
written recently on multiresponse estimation. 

A third problem is the determination of increments or rates 
of change of the state variables from the data. Sometimes 
measurements have been taken evenly spaced in time. In this 
situation the computation of periodic increments to be used 
as dependent variables is straightforward. Often, however, 
measurements taken at various intervals are available, and 
approximations must be used. This is likely to be more of a 
problem with fast-growing species, where growth differences 
arising from varying dates of measurement are greater. In 
addition, the variability in increments due to year-to-year cli- 
matic fluctuations tends to be larger than in slow-growing 
stands where periodic increments average out these effects 
over several years. A related difficulty lies in the approxima- 
tions sometimes needed when accumulating increments over 
a forecasting interval which is not an exact multiple of the 
increment periods. 

Some statistical estimation methods not based on regression 
have been used. In a series of models for New Zealand radiata 
pine (Garcia 1979, 1984a, 1988), the differential equations 
specifying the transition function were augmented by random 
perturbation terms for estimation purposes, transforming 
them into stochastic differential equations. The problems asso- 
ciated with varying increment periods were then avoided by 
using directly the integrated form of the equations, at the 
same time accounting for most of the correlation effects 
through the stochastic structure of the model. Multiresponse 
was dealt with through simultaneous maximum likelihood esti- 
mation, using a general-purpose optimization procedure. 

SUMMARY 
The state-space point of view can clarify the various approaches 
to growth modelling. In this view the behaviour of a time- 
varying system is described by a state that characterizes the 
system at any point in time, and a transition function that 
specifies how the state changes over time. 

A multidimensional state is required to adequately model 
forest stand growth. Growth models are commonly classified 
into three types that differ in the level of detail in the state 
description. In stand-level models the state consists of a small 
number of summary variables, for example basal area, stock- 
ing, and top height. Individual-tree distance-dependent models 
include in the state the size and location of every tree in a piece 
of land. Individual-tree distance-independent models use a state 
description based on a size (usually diameter) distribution. 

The most appropriate type of model to use depends on the 
circumstances. The homogeneity of the stands and the kind of 
treatments to be analysed determine how detailed a state descrip- 
tion needs to be. In addition, the state description also deter- 
mines the quantity and quality of inventory data required for 
growth projections. 

The development of growth models presents special statistical 
problems. A n  approach involving stochastic differential equa- 
tions and maximum likelihood estimation has been developed 
and used successfully in New Zealand. 
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