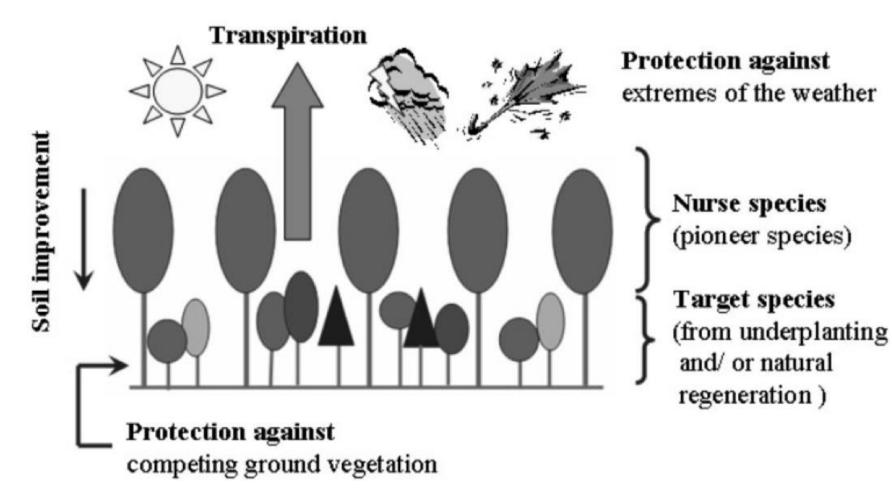
Dr Adam Forbes Principal Ecologist, Forbes Ecology

Permanent Native Carbon Forests from Radiata Pine Plantations

ANZIF Joint Conference, 26 August 2019


Talk Outline

- Radiata pine plantations as a nurse crop
- Ecological issues and principles for managing radiata pine for permanent forestry
- Optimising radiata pine plantations specifically for permanent carbon forestry
- Further research

Nurse Crop Concept

- Partial shading
- Suppression of light-demanding weeds
- Restored forest regeneration function

Pommerening & Murphy 2004 FORESTRY

Nurse Role of Radiata Pine Plantations

- Fast-growing tree
- Rapidly dominates the site and modifies the microclimate
- Starting point for permanent forestry
- Radiata pine is a relatively short-lived tree a succession is essential
- Transition to a self-sustaining forest

Applications for Transitioning Pines to Permanent Native Forest

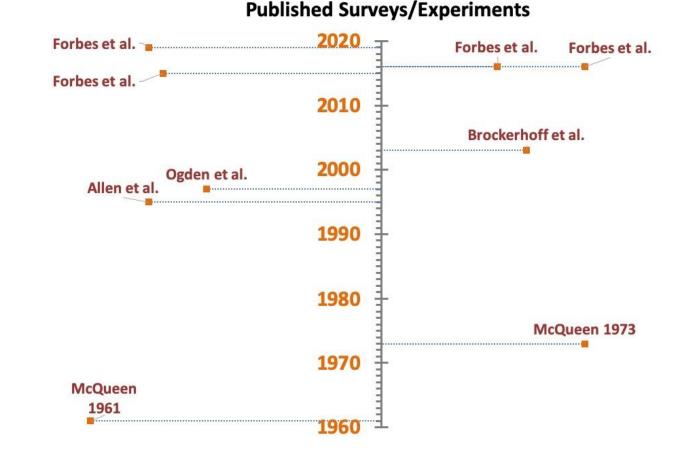
Soil conservation

- Avoid clearfell on erodible soils
- Rapid transition of pines
- Large-scale forest restoration

Forest restoration

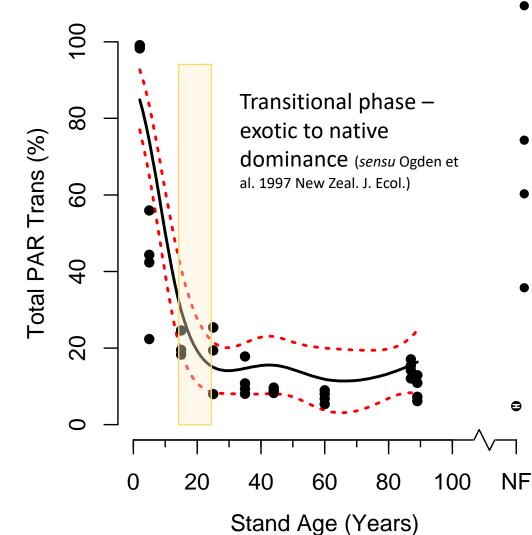
 Use the forest microclimate to create diverse naturalised forest

Carbon storage


 Rapid-biomass nursery for recruitment of highbiomass, long-lived trees

Key Variables for Understorey Regeneration and Reverting Pines

• Stand age/structure and light


(McQueen, Ogden et al., Allen et al. Brockerhoff et al.)

- Climate (geographic variance) (Brockerhoff et al.)
- Interventions (Forbes et al.)
- Seed source proximity (Forbes et al.)
- **Herbivory** (Forbes et al. and the ecological literature)

Ecological Issues and Principles

Stand Structure and Understorey Light Environment



Forbes et al. 2019. NEW ZEAL J FOR SCI

- Stand structure controls understorey light environment which drives understorey regeneration
- Stand age drives stand structure
- Light environment needs to exclude lightdemanding and favour shade-tolerant species
- Aside from age, canopy and understorey manipulations can help to achieve regeneration of shade-tolerant forest flora

Increasing shade tolerance Increasing stature Increasing seed size Increasing longevity

2-5 yrs.

Forbes et al. 2019. NEW ZEAL J FOR SCI

Both the pine canopy and the developing understorey can cause too much competition for light

Native tree fern basal area

Forbes et al. 2016. *RESTOR ECOL*

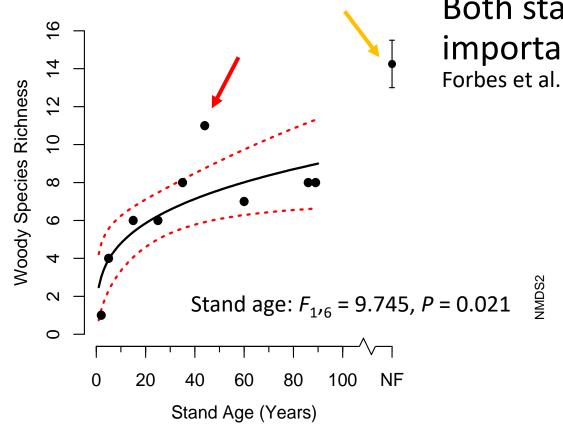
Forbes et al. 2016. FOREST ECOL MANAG

Stand Age (Years)

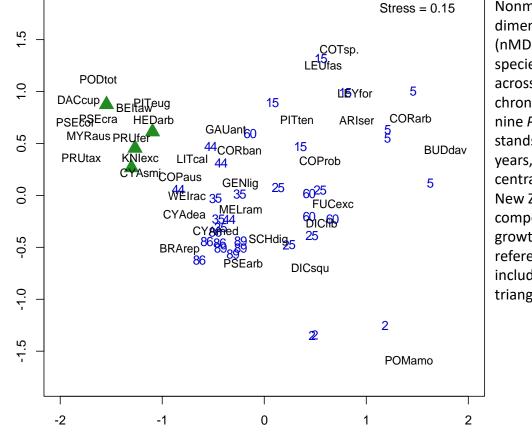
100 NF

Competition Interventions

Before & After Canopy Gap Creation


Before & After Tree Fern Thinning

Forbes et al. 2016. RESTOR ECOL


Forbes et al. 2016. FOREST ECOL MANAG

In addition to stand structure, proximity to seed sources are important

Predicted indigenous woody species richness (S) as a function of stand age and meso-scale topographic exposure, across a chronosequence of nine *Pinus radiata* plantation stands aged 2–89 years, Kinleith Forest, central North Island, New Zealand. For comparative purposes, the S from an old-growth natural forest ("NF") reference site is shown. Error bars = \pm 1SE; dashed lines indicate the 95% CI.

Both stand age and native forest proximity important for understorey regeneration Forbes et al. 2019. NEW ZEAL J FOR SCI

NMDS1

Nonmetric dimensional scaling (nMDS) ordination of species composition across chronosequence of nine Pinus plantation stands aged 2–89 years, Kinleith Forest, central North Island, New Zealand. The composition of an oldgrowth natural forest reference site is also included, shown by triangles.

Factors Influencing Regeneration – Seed Dispersal

Ecological isolation leads to dispersal limitation

Only 79–88% of seeds were dispersed > 100 m, and only < 1% of seeds were dispersed > 1,000 m

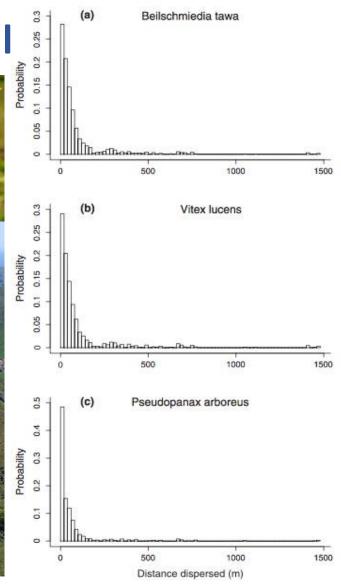
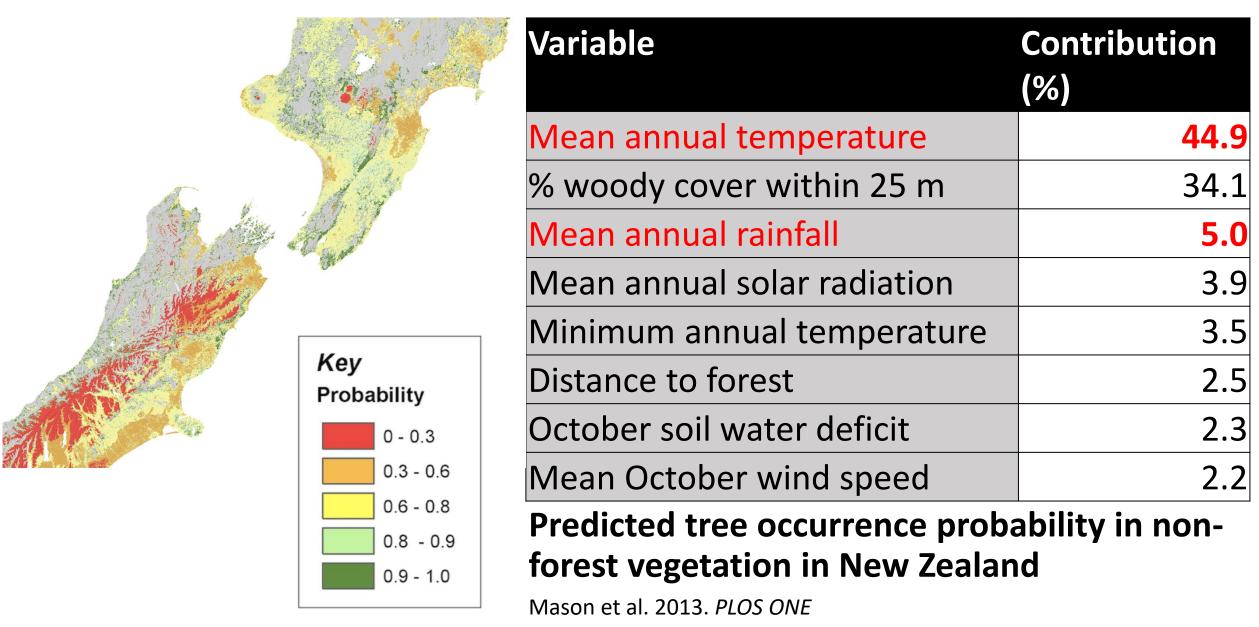


Figure 1 Estimated probability distributions of *Hemiphaga* novaeseelandiae seed dispersal distances at 20 m intervals for (a) Beilschmiedia tawa, (b) Vitex lucens, and (c) Pseudopanax arboreus. Dispersal distances were generated using a mechanistic model that incorporated empirical data for individual *H. novaeseelandiae* movements and seed retention times. Note differences in the y-axis scales.

Wotton & Kelly 2012 J Biogeography

Seed source amount versus distance?


Fahrig 2013. J BIOGEOGR

Tall forest species

Low forest/scrub species

For carbon storage, forest biomass is crucial Thus considerations of composition and stature are central

Factors Driving Natural Afforestation

Factors Influencing Regeneration – Herbivore Browse

Diet preferences of introduced ungulates¹

Ungulate Preference Class		
Preferred	Not Selected	Avoided ²
Wineberry	Marbleleaf	Tawa
Cabbage tree	Hinau	Rimu
Tree fuchsia	Pigeonwood	Beech spp.
Broadleaf	Sth. Is. kowhai	Halls & true totara
Mahoe		Miro
Five finger		Matai
Lancewood		

¹ Forsyth et al. 2002 NEW ZEAL J ZOOL
² This means consumption is less than expected, based on availability

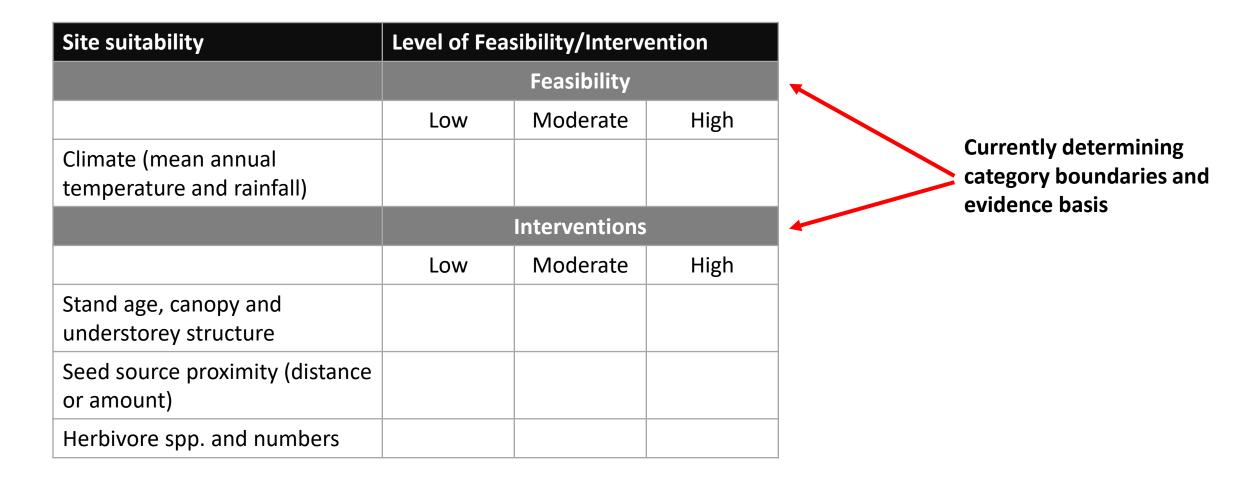
Summary: Key considerations for permanent carbon forestry using a radiata pine nurse

- Stand age
- Canopy and understorey structure
- Seed source proximity (distance or amount)
- Climate
- Herbivore species and numbers

Optimising Pines for Permanent Carbon Forestry

Key Ecological Objectives

To achieve:


- A high biomass
- An acceptable carbon profile through the transition
- A self-sustaining permanent forest

With the minimum necessary level of intervention

Managing a Transition

- Reliance on natural processes:
 - Canopy shade
 - Propagule dispersal
 - Disturbance-driven regeneration
- Key management actions:
 - Addressing canopy and understorey competition
 - Adequate propagule sources
 - Herbivore management

Permanent Forest Design Criteria (Working Concept)

Further Research; What We Still Need to Know

- Further work on the transition
 - Guidance for canopy interventions to aid a transition
 - Canopy regime to transition, methods of gap creation, staging, maintenance across rainfall and temperature gradients
 - Seed source proximity distance versus amount and corresponding guidance over levels of propagule introduction
 - Landscape-scale herbivore management or fencing technologies
- Evidence-based policy for permanent forestry using this approach soil, biodiversity and/or carbon applications

Acknowledgements and Contact Details

Acknowledgements

- \odot Prof. David Norton
- $\,\circ\,$ Dr. Fiona Carswell
- Hancock Forest Management
- $\,\circ\,$ Kaingaroa Forest | Timberlands Ltd
- $\,\circ\,$ New Zealand Carbon Farming
- $\,\circ\,$ UC New Zealand School of Forestry

Contact Details

Dr Adam Forbes adam@forbesecology.co.nz www.forbesecology.co.nz

